How to create a dynamic (self-constructing) chain
This guide assumes familiarity with the following:
Sometimes we want to construct parts of a chain at runtime, depending on the chain inputs (routing is the most common example of this). We can create dynamic chains like this using a very useful property of RunnableLambda's, which is that if a RunnableLambda returns a Runnable, that Runnable is itself invoked. Let's see an example.
- OpenAI
- Anthropic
- Azure
- Cohere
- FireworksAI
- Groq
- MistralAI
- TogetherAI
pip install -qU langchain-openai
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-3.5-turbo-0125")
pip install -qU langchain-anthropic
import getpass
import os
os.environ["ANTHROPIC_API_KEY"] = getpass.getpass()
from langchain_anthropic import ChatAnthropic
llm = ChatAnthropic(model="claude-3-sonnet-20240229")
pip install -qU langchain-openai
import getpass
import os
os.environ["AZURE_OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import AzureChatOpenAI
llm = AzureChatOpenAI(
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
)
pip install -qU langchain-google-vertexai
import getpass
import os
os.environ["GOOGLE_API_KEY"] = getpass.getpass()
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model="gemini-pro")
pip install -qU langchain-cohere
import getpass
import os
os.environ["COHERE_API_KEY"] = getpass.getpass()
from langchain_cohere import ChatCohere
llm = ChatCohere(model="command-r")
pip install -qU langchain-fireworks
import getpass
import os
os.environ["FIREWORKS_API_KEY"] = getpass.getpass()
from langchain_fireworks import ChatFireworks
llm = ChatFireworks(model="accounts/fireworks/models/mixtral-8x7b-instruct")
pip install -qU langchain-groq
import getpass
import os
os.environ["GROQ_API_KEY"] = getpass.getpass()
from langchain_groq import ChatGroq
llm = ChatGroq(model="llama3-8b-8192")
pip install -qU langchain-mistralai
import getpass
import os
os.environ["MISTRAL_API_KEY"] = getpass.getpass()
from langchain_mistralai import ChatMistralAI
llm = ChatMistralAI(model="mistral-large-latest")
pip install -qU langchain-openai
import getpass
import os
os.environ["TOGETHER_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key=os.environ["TOGETHER_API_KEY"],
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
)
# | echo: false
from langchain_anthropic import ChatAnthropic
llm = ChatAnthropic(model="claude-3-sonnet-20240229")
from operator import itemgetter
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import Runnable, RunnablePassthrough, chain
contextualize_instructions = """Convert the latest user question into a standalone question given the chat history. Don't answer the question, return the question and nothing else (no descriptive text)."""
contextualize_prompt = ChatPromptTemplate.from_messages(
[
("system", contextualize_instructions),
("placeholder", "{chat_history}"),
("human", "{question}"),
]
)
contextualize_question = contextualize_prompt | llm | StrOutputParser()
qa_instructions = (
"""Answer the user question given the following context:\n\n{context}."""
)
qa_prompt = ChatPromptTemplate.from_messages(
[("system", qa_instructions), ("human", "{question}")]
)
@chain
def contextualize_if_needed(input_: dict) -> Runnable:
if input_.get("chat_history"):
# NOTE: This is returning another Runnable, not an actual output.
return contextualize_question
else:
return RunnablePassthrough() | itemgetter("question")
@chain
def fake_retriever(input_: dict) -> str:
return "egypt's population in 2024 is about 111 million"
full_chain = (
RunnablePassthrough.assign(question=contextualize_if_needed).assign(
context=fake_retriever
)
| qa_prompt
| llm
| StrOutputParser()
)
full_chain.invoke(
{
"question": "what about egypt",
"chat_history": [
("human", "what's the population of indonesia"),
("ai", "about 276 million"),
],
}
)
"According to the context provided, Egypt's population in 2024 is estimated to be about 111 million."
The key here is that contextualize_if_needed
returns another Runnable and not an actual output. This returned Runnable is itself run when the full chain is executed.
Looking at the trace we can see that, since we passed in chat_history, we executed the contextualize_question chain as part of the full chain: https://smith.langchain.com/public/9e0ae34c-4082-4f3f-beed-34a2a2f4c991/r
Note that the streaming, batching, etc. capabilities of the returned Runnable are all preserved
for chunk in contextualize_if_needed.stream(
{
"question": "what about egypt",
"chat_history": [
("human", "what's the population of indonesia"),
("ai", "about 276 million"),
],
}
):
print(chunk)
What
is
the
population
of
Egypt
?